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Abstract 
Traditionally, collocations are treated in lexicography as idiosyncratic word combinations that must be 
learnt by heart by second language learners and which must thus be listed explicitly in collocation dic- 
tionaries. However, the learners' capacity to understand and to produce collocations they have never 
heard before indicates that collocations are not as opaque as often assumed. In our work on the extrac- 
tion of collocations from corpora and their classification with respect to a fine-grained semantically- 
oriented typology, we experiment with several alternative machine learning techniques that exploit dif- 
ferent characteristic features of collocations. These techniques can be viewed to model different strate- 
gies used by learners for the recognition of collocations. Their results can be thus expected to give us 
some evidence on how collocation dictionaries should be structured in order to provide best access to 
this important part of lexis. 

1 Introduction 

In lexicography, collocations are traditionally considered idiosyncratic word combina- 
tions which must be learned by heart by second language learners and which are, therefore, 
to be listed explicitly in collocation dictionaries. Consider, for instance, give [a] lecture, take 
[a] walk, attend [a] conference, etc.: in German, you 'hold' a lecture ([eine] Vorlesung 
halten) and in Russian you 'read' it {Citat' lekciju); in German and French, you 'make' a 
walk ([einen] Spaziergang machen, faire [une] promenade), while in Spanish you 'give' it 
(dar [un] paseo); in German and Russian, you 'visit' a conference ([eine] Konferenz be- 
suchen, posetit' konferenciju), while in Spanish, you 'assist' to it (asistir [al] congreso). The 
Oxford collocation dictionary, the BBI, and the Explanatory Combinatorial Dictionaries - to 
name just a few - are examples of such explicit collocation listings. 

However, despite this obvious idiosyncrasy, second language learners often understand 
and produce collocations they have never heard before. How can this be explained? The an- 
swer to this question may well influence the design of the macrostructure of collocation dic- 
tionaries. 

Obviously, collocationsare semantically less opaque than we might assume at first in- 
stance. It what follows, we investigate how the semantic description serves the machine best 
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in the context of automatic collocation understanding. By "understanding" we mean the 
identification ofthe semantics ofcollocations by automatically classifying them according to 
a fine-grained semantically-oriented collocation typology. From our findings, we expect to 
be able to draw conclusions concerning human processing of collocations. We explore the 
following three strategies: 

(i) Classification by using prototypical samples for each type of collocations. When a 
new word bigram is to be classified, its semantic features are compared with the se- 
mantic features of the prototypical samples of each type in the typology. The bigram 
is assumed to be of the type the samples of which are most similar to the bigram. 

(ii) Classification by using presumed characteristic semantic features of the elements of 
the samples for each type of collocations. When a new word bigram is to be classi- 
fied, the semantic features of its elements are compared with the characteristic fea- 
tures of the samples collected for each type in the typology. The bigram is assumed to 
be of the type the characteristics of which are most similar to the bigram. 

(iii) Classification by using a presumed characteristic correlation between the semantic 
features of the elements of the typical samples of each type of collocations. When a 
new word bigram is to be classified, the interdependency between the features of its 
elements is compared with the correlating features that are representative for each 
type in the typology. The bigram is assumed to be of the type the samples of which re- 
flect the most similar correlation. 

Each strategy has been implemented in terms of a distinct machine learning (ML-) tech- 
nique; a series of experiments has been conducted with each of them. All experiments have 
been carried out with Spanish material. As collocation typology, we used the lexical func- 
tions (LFs) known from the Explanatory Combinatorial Lexicology ^Iel'cuk, 1996). As the 
source of the semantic description of collocation elements, we used the Spanish part of the 
EuroWordNet lexical database (Vossen, 1998),henceforth SpEWN. 

The remainder of the paper is structured as' follows. In the next section, we briefly intro- 
duce the lexicological basics of our work. In Section 3, we present the ML-techniques used 
to implement the different strategies listed above. Section 4 contains a short overview of 
SpEWN. In Section 5 the experiments we carried out are outlined and their results are evalu- 
ated. Section 6, finally, concludes summarizing the most important findings of these experi- 
ments. 

2 Lexicological and Formal Basics 

In this section, we first introduce the notion of LFs, listing the LFs we refer to in the 
course of our presentation and present then theiformal description of LF-instances as used in 
the sections on ML-experiments. 

2.1 Lexical Functions 

The following presentation of LFs is restricted to the absolute minimum necessary for the 
understanding of the presentation in the subsequent sections. Readers interested in a more 
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profound introduction are referred to the numerous publications on LFs, and in particular, to 
(Meľčuk, 1996). 

In the context of collocations, only syntagmatic LFs are of relevance. A syntagmatic LF 
encodes a standard abstract lexico-semantic relation between two lexical units among which 
one of the units (the base) controls the lexical choice of the other unit (the collocate). "Stan- 
dard" means that this relation is sufficiently common; "abstract" means that this relation is 
sufficiently generic to group all relations that possess the same semantic nucleus. We focus 
on standard abstract verb-noun relations. Typical examples of standard abstract relations be- 
tween a noun and a verb are 'perform' (as between give and presentation, make and sugges- 
tion, take and walk, etc.) and its phasal counterparts 'start to perform' (as between open and 
discussion, enter [into] and debate, get and headache, etc.), 'continue to perform' (as be- 
tween retain and power, keep and influence, carry on and conversation), and 'end to per- 
form' (as between lose and power, overcome and crisis, end and presentation). In total, about 
twenty different verb-noun relations of this kind have been identified. For convenience, as 
names of LFs, Latin abbreviations are used. In our experiments, we used the following nine 
different LFs for which we give, in what follows, their semantic glosses and a number of ex- 
amples:1 

Operl 'perform', 'experience', 'carryout',etc.;e.g.: 
dar [un] golpe lit. 'give [a] blow', presentar [una] demanda lit. 'present [a] demand,hacer [una] 
campana lit. 'do [a] campaign, sentir [la] admiración lit. 'feel [the] admiration', tener [la] alegría 
lit. 'have [the] joy' 

ContOperl 'continue to perform', continue to experience', etc.; e.g.: 
guardar [el] entusiasmo lit. 'keep [the] enthusiasm', conservar [el] odio lit. 'conserve [the] hatred, 
pasar [la] vergüenza lit. 'pass [the] shame' 

Oper2 'undergo', 'be source of, etc.; e.g.: 
someterse [a un] análisis lit. 'submit [oneself to an] analysis, afrontar [el] desafío lit. 'face [the] 
challenge', hacer [un] examen lit. 'do [an] examination', tener [la] culpa lit. 'have [the] blame' 

Reall 'act accordingly to the situation', 'use as foreseen', etc.; e.g.: 
ejercer [la] autoridad lit. 'exercise [the] authority', utilizar [efl teléfono lit. 'use [the] telephone', 
hablar [una] lengua lit. 'speak [a] language, cumplir [la] promesa lit. 'fulfil [the] promise' 

Real2 'react accordingly to the situation'; e.g.: 
responder [a la] objección lit. 'respond [to the] objection', satisfacer [el] requisito lit. 'satisfy [the] 
requirement', atender [la] solicitud lit. 'attend [the] petition', rendirse [a la] persuasion lit. 'render 
(oneself) [to the] conviction' 

CausFuncO 'cause the existence of the situation, state, etc'; e.g.: 
dar alarma lit. 'give alarm', celebrar elecciones lit. 'celebrate elections', publicar [una] revista 
'publish [a] joumaV,provocar [una] crisis lit. 'provoke [a] crisis' 

1 The subscripts the LF-names specify the projection of the semantic structure of the collocations denoted by an LF 
onto their syntactic structure. In our experiments, we interpret complete LF-names as collocation class labels. There- 
fore, we can ignore the semantics ofthe subscripts and consider them simply as part ofLF-names. Recall that we are 
working with Spanish material. Therefore, we provide here Spanish examples. 
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FinFuncO'thesituationceasestoexist';e.g.:        •'. 
[la] aprensión se disipa lit. '[the] aprehensión evaporates', 

Caus2Funcl 'cause (by the object) to be experienced / carried out / performed' 
dar [una] sorpresa lit. give [a] surprise, provocar [la] indignación lit. 'provoke [the] indignation', 
despertar [el] odio lit. 'awake [the] hatred' 

IncepFuncl 'begin to perform / to experience / to carry out'; e.g.: 
[la] desesperación entra [en N] lit. '[the] despair enters [in N]', [el] odio se apodera [de N] lit. 
'[the] hatred gets hold [ofN]', [la] ira invade [Ň] lit. '[the] rage invades [N]' 

2.2 Basic assumptions and notations 

Our work is grounded in the assumption that collocations may receive a componential de- 
scription. They are what Baldwin et al. (2003),call "simple decomposable multiword expres- 
sions". For our purposes, we use a semantic component description of collocation elements. 
That is, in a collocation ••• (with B being the meaning of the base •, C the meaning of the 
collocate C and B©C the meaning of the collocation B@C as a multiword unit), B is assumed 
to be given by the set of components {bl,b2,...,bNb} and C by the set of components 
{cl,c2,...,cNc} ('Nb' stands for the number ofcomponents in the base description and 'Nc' 
for the number of components in the collocate description). The componential description of 
lexical meanings is expected to be available from an external lexical resource. Any suffi- 
ciently comprehensive lexico-semantic resource suitable for NLP can be used; as already 
mentioned, we use the Spanish part of EuroWordNet, SpEWN. The componential meaning 
descriptions facilitate the use of machine learning techniques for the implementation of the 
three above collocation classification strategies in that they allow for the derivation of an ex- 
plicit and verifiable correlation either between subsets or complete sets of base meaning 
components and subsets / sets ofcollocate meaning components characteristic ofagiven LF. 

To learn a correlation between the semantics of a base and the collocates this base co-oc- 
curs with, we start from a training set of manually compiled disambiguated instances for 
each of the n LFs used for classification. That is, if in an LF-instance B®C contained in a 
training set, B and/or C are polysemous, only the description of one sense of B (the one 
which comes to bear in B@Q and the description of one sense of C are taken. 

Before we enter into the presentation of the machine learning techniques in the next sec- 
tion, let us introduce the notations and abbreviations used henceforth: 

• a base lexeme is referred to as B and a collocate lexeme as C; accordingly, the meaning 
description of B is defined as B = {bl,b2,...,bNb} and the meaning of C as C = 
{cl,c2,...,cNc}; 

• a collocation instance in a training set for agiven LF is referred to as (B,C) and its mean- 
ingas(B,C)orBeC; 

• given a training set of instances for each LF Ll,L2,...,Ln in the typology, B stands for 
the meaning component collection over the base sets of the instances from the training 
sets of all LFs and C for the meaning component collection over the collocate sets of the 
instances from the training set ofall LFs; 

• a candidate noun-verb bigram that is to be classified (recall that we concentrate on noun- 
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verb collocations) is referred to as (N,V), the meaning description of the noun N as N = 
{nl,...,nNN}, and the meaning description of the verb V as V = {vl,...,vNV}. 

3 Implementing Collocation Classification Strategies by ML-Techniques 

Let us now introduce the three ML-techniques we use to model the different collocation 
recognition (= classification) strategies listed in Section 1. 

3.1 Classification by Using Prototypical ColU>cation Samples 

For the realization of the classification of collocations by using prototypical samples for 
each LF (i.e., for each type ofcollocations), the so-called "nearest neighbour" (NN) technique 
is suitable. This technique compares the candidate bigrams with the training instances, choos- 
ing for each bigram one or several instances that are most similar ("nearest") to it. The bigram 
is assumed to belong to the same class (be of the same type) as its nearest instance. If several 
nearest instances are being selected, a voting procedure may be implemented: the candidate 
bigram is assigned to the class to which the majority of the nearest instances belong. 

Unlike the other ML-techniques, NN-classification does not include, strictly speaking, a 
learning stage. Rather, it can be thought ofas consisting ofa training material representation 
stage and a classification stage. 

The representation of the training material for NN-classification can in abstract terms be 
described as a pair of vector space models (Salton, 1980) - a base vector space and a collo- 
cate vector space: assume a training set of instances for each LF L1, L2, ..., Ln in the typol- 
ogy; the corresponding B and C naturally map onto multidimensional vector spaces VB (the 
base description space) and VC (the collocate description space). Each component b e B and 
each component c e C provides a distinct dimension in VB and VC, respectively. Each train- 
ing instance / is thus represented by a pair of vectors (^>vbI, ^vcf) e (VB, VC). In the sim- 
plest realization of the model, ^>vbI and -^>vcI will ćontain a '1' for dimensions (= compo- 
nents) available in / and a '0' for dimensions that are not available in /. Obviously, realiza- 
tions with a weighting schema are possible to take into account the varying importance of di- 
mensions for the description ofacollocation. We use a binary weighting schema. 

Before applying this representation in the classification stage, those samples may be re- 
moved from (B, C) that are "unreliable". As unreliable, we consider a sample if it is nearest 
to an instance of a different LF than it is itself. To determine which instance is nearest, we 
use equation (1) from the classification stage; see below. 

Given a candidate word bigram K\= (N, V) that is to be classified according to the LF-ty- 
pology, the classification stage consists of (i) decomposition of the meaning of N and V as 
(N,V), and (b) mapping of (N,V) onto (VB, VC). The LF-label of the instance / whose vector 
pair (^vbI, -^vci) is nearest to the vector pair (-^vnK, -^vvK) of K is assigned to the candi- 
date. 

To determine the similarity between (^vbI, -^vcF) and (-^vnK, ^vvK), the cosine or any 
other suitable metric can be used. In our experiments, we used the following set-based metric: 

( 1 ) sim(I,K) = bfb lfimax\N\ + gfc lfcmax |V| 
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with^7 as the number ofdimensions shared by -^vbI and -^vnK;fbmax as the maximal num- 
ber of dimensions shared by ^>vnK and a base vector of any instance in the training set for 
the LF of which / is an instance, fc as the number of dimensions shared by ->vc/ and -^vvK 
andfcmax the maximal number of dimensions1 shared by -^vvK and a collocate vector of any 
instance in the training set for the LF of which / is an instance. \N\ stands for the number of 
components in the description of the noun of K and |V| for the number of components in the 
description of the verb, b and g are constants that can be used to tune the importance of the 
base and collocate, respectively, for the classification task. In our experiments, we used b = 1 
and g = 1.5; that is, we assigned higher importance to the collocate meaning than to the base 
meaning, lffcmax = 0 (which means that ^vc/ and ^>vvK do not share any dimension), the 
second summand in Equation (1) becomes invalid and the candidate bigram is rejected as a 
collocation of the type L of /. The candidate is also rejected if sim(I,K) is smaller than a giv- 
en threshold for all instances of L in the training set. 

3.2 CUissification by Using Characteristic Semantic Features ofCollocation Elements 

A series of ML-techniques is available that use isolated characteristic features of colloca- 
tion elements, i.e., that do not take the interdependency between the features (e.g., between a 
prominent base feature and a prominent collocate feature or between two prominent collo- 
cate features) into account. We have taken the,popular Naïve Bayes classification technique. 

The central part of any Bayes classification technique is the so-called Bayesian network. 
A general Bayesian network can be viewed as a labelled directed acyclic graph that encodes 
ajoint probability distribution over a set of random variables V = [XlJ(2,...,Xn}. When used 
for classification, usually a class variable (here the LF-variable) and a number of attribute 
variables (here, semantic component labels) are introduced. The value of the variables may 
be again either '1' or '0'. The names of the variables function as labels of the nodes of the 
graph; the co-occurrence dependency between variables is represented by arcs connecting 
the nodes they label. 

The Naïve Bayesian network is the simplest realization of a Bayesian network. It assumes 
that the attribute variables depend only on the class variable; attribute variables are mutually 
conditionally independent. The network is thus restricted to a tree ofdepth 1, with the LF-vari- 
able as the root node, component variables as the attribute leaf nodes, and edges defined from 
the class node to attribute nodes. For each instantiation of the LF-variable, i.e., for each LF in 
the typology, the edge between the LF-variable and any attribute node is labelled by the prob- 
ability that the corresponding component occurs in the description of the samples of the LF in 
question. The probability is calculated based on the component distribution within the samples 
in the training set for LF. For the classification ofa given noun-verb bigram (N,V), thejoint 
probability over all components that occur in the descriptions ofN and V, i.e., N and V, is com- 
puted for each LF. The LF with the highest probability is selected as label for (N,V): 

For readers interested in technical details, some more formal information might be of rel- 
evance. Thus, to compute the probability of each potential LF-label L, we apply the Bayes 
rule. The label with the highest posterior probability is then predicted to be the LF-label for 
(Ai,V),i.e.: 

(2) CLF = argmaxLFj P(N "* V)|LFj) = fkoN u V P(co|LFj) 
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where CLF is the most probable class variable value, and where LFj ranges over all LFs in 
the typology. Given that the attributes are considered independent, P(co|LFj) for any compo- 
nent co can be estimated adopting the m-estimate of probability (Mitchell, 1997, pp. 
179,182): 

(3) P(co|LFj) = (nkco +1) / (nco + |B u C|) 

where nco is the total number of components in the descriptions of all training examples 
whose class variable value is LFj and nkco is the number of times the component co is found 
among these nco components. |B u C| stands for the total number of distinct component in 
the training set descriptions. 

3.3 Classification by Using the CorreUition between Features ofCollocation Ekments 

The Naïve Bayesian Network attempts to grasp the characteristic features of the colloca- 
tion elements. Intuitively, however, it is the correlation between the semantic features of the 
collocation elements that is important. Meľčuk and Wanner (1996) demonstrated that such a 
correlation exists and that this correlation can be used, for instance, for the definition of an 
inheritance-oriented macro structure in collocation dictionaries. 

An ML-technique that allows us to model this correlation is the Tree-Augmented Network 
(TAN) Classification technique (Friedman et al, 1997). TAN is an extension of the NB-clas- 
sification technique. The structure of a TAN is based on the structure of the Naïve Bayesian 
network, i.e., it also requires that the class variable node be parent of every attribute node. 
But to capture the correlations between the components, additional edges between attribute 
nodes are introduced, which are labelled by the component co-occurrence probabilities with- 
in the descriptions of the samples of an LF. 

To take into account that the correlation between components depends on the LF in ques- 
tion (i.e., the value of the class variable), we construct for every instantiation of the LF-vari- 
able a TAN. This "multinet" extension of the original TAN-classifier is also along the lines of 
the proposal in (Friedman et al, 1997). 

In order not to make the presentation more technical than necessary, we dispense with the 
presentation of the algorithm for the construction of TANs; the interested reader is asked to 
consult, e.g., (Cheng and Greiner, 2001) or any other of the numerous publications on the 
topic. Given the structure of a multinet, the formula used to classify a candidate bigram 
(N,V), the class variable value LFk with the most optimal network is chosen: 

(4) CLF = argmaxLFkP{LFk) = Pcol, co2eN» V P{co\LFj) lP{col,co2\ LFk) 

with IP{col,co2\ LFk) as the conditional mutual information between two meaning compo- 
nents col and co2, given LFk. 

4 Spanish EuroWordNet 

lAs already mentioned, for the componential description of the LF-instances in the train- 
ing sets as well as for the description ofthe candidate bigrams, we use the Spanish part ofthe 
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EuroWordNet (EWN), henceforth SpEWN. More precisely, we use the hyperonymy hierar- 
chies of lexical items provided by SpEWN. EWN is a multilingual lexical database which 
comprises lexico-semantic information organized following the relational paradigm (Vossen, 
1998). The current version of the SpEWN has to a major part been derived automatically 
from the English WordNet developed at Princeton University ^ellbaum, 1998). In contrast 
to the original Princeton WordNet, where the hyperonymy hierarchy of a lexical item is pure- 
ly lexical (i.e. contains only hyperonyms), in SpEWN (as in most WNs in the EWN), the hy- 
peronym hierarchy of each lexical item consists of: 

• its hyperonyms and synonyms (i.e., words that combine with the lexical item in question 
to form a {synset) 

• its own Base Concepts (BCs) and the BCs of its hyperonyms 
• the Top Concepts (TCs) of its BCs and the TCs of its hyperonyms 

Figure 1 shows, for illustration, the hyperonym hierarchies (including synonyms, BCs 
and TCs) ofPRESENTARl 'present' and RECLAMACIÓN3 'declaration' from the colloca- 
tionpresentar[una] declaración lit. 'present [á] reclamation' ('lodge [a] reclamation'). 

{{7. ••••••••• RECLAMACTÔH3 i 
• 6.00MUritafcn mSTANCŁUFEnCfÓNl.FEDIDOl 

1 •••••••••• Cotwiunica11on | ••••'11 Usage CONTSNlD03 MENSAJI2 
4. Fops ••••••••••• | Comnwraca8on | Mental | Purpose | Social COMÜNlCAClÓM 

3« Tm Relaüoß | Sodai RELAClÓN^OClALI 
2, ToptRetaion RElACÏÔHI. 

••••• ABSTRACCfÔMl) 
(6, šOmmuniClta FKESENTAR3 

1 <sofflwiuwcai»SOMBTE'R3 
4 ••••••••§•• AgaÉve | BounđedEvent | ••••••••&•• j •••••• PEDíRl 

3. ••••••••••• &gentfve | •••••••^•• | ÜnboundedEventCOMÖNICARZ 
2, mUŚ •••• | Dynamic | Social IMTERACIUARl 

I, socia AganfefB | Dynamic ACTOAR4 LLEVAR-A^AB02 HACIRlS)) 

i 

Figure 1. Hyperonym hierarchies for PRESENTAR3 and RECLAMACIÓN3 
in the collocationprejentor [una/la] reclamacion(lexical items are written in small capitals, BCs 

and TCs are in sans serif, and the TCs start with a capital; individual TCs are separated by the '|' sign) 

BCs are general semantic labels that subsume a sufficiently large number of synsets. Ex- 
amples of such labels are: change, feeling, motion, and possession. Thus, DECLARACIÓN3 
'declaration' is specified as communication, MIEDOl 'fear' as feeling, PRESTAR3 'lend' as 
possession, and so on. 

Unlike unique beginners in the original WN, BCs are mostly not "primitive semantic 
components" filler, 1998); rather, they can be considered labels of semantic fields. The set 
of BCs used across different WNs in the EuroWN consists of 1310 different tokens. The lan- 
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guage-specific synsets of these tokens constitute the cores of the individual WNs in Eu- 
roWN. 

Each BC is described in terms of TCs - language-independent features such as Agentive, 
Dynamic, Existence, Mental, Location, Social, etc. (in total, 63 different TCs are distin- 
guished). For instance, the BC change is described by the TCs Dynamic, Location, and Exis- 
tence. 

5 Experiments and their Evaluation 

We conducted first two experiments with different training and test material. In the first 
experiment, we trained on and classified verb-noun bigrams whose nouns all belong to the 
same semantic field, namely to the field of emotion nouns. In the second experiment, we 
trained on and classified verb-noun bigrams with no consideration of field constraints. A sep- 
arate experiment on mono-field material is of value because the semantics of the nouns that 
belong to the same semantic field are a priori homogeneous at a certain level of abstraction. 
The lexical-semantic description of the instances of the same LF can thus be assumed to be 
similar. We may also hypothesize that for second language speakers it is easier to handle new 
collocations if they belong to the same semantic field as those they already know. We have 
chosen emotion nouns because they are rich in collocations and because for emotion nouns 
lists of LF-instances are already available for Spanish (see below). 

Intuitively, the more collocations we know as language learners the better we can correct- 
ly interpret new unknown ones. In accordance with this assumption, the classification experi- 
ments in Section 5.1 have been carried out with 95% ofthe samples available for each LF as 
training material and 5% as test material. However, this assumption presupposes that the 
learning material is balanced; i.e., that we progressively learn instances of all LFs. If this is 
not assured, we might become biased towards one of the LFs. In order to get some experi- 
ence on this aspect of collocation learning, we also experimented with different training set 
ratios; cf. Section 5.3. 

Finally, one must be aware that each collocation recognition strategy from Section 1 can 
be implemented by a number of different machine learning techniques. Each of these tech- 
niques may have its own peculiarities and lead thus to different results. For illustration, we 
show the results achieved for classification of both emotion noun and field independent bi- 
grams by a second technique that uses isolated characteristic features of collocation elements 
- a decision tree classification technique based on the ID3-algorithm (Quinlan, 1986); cf. 
Section 5.4 

5.1 Classification Experiments 

For Experiment 1, we used the following five ofthe nine LFs listed in Section 2: Operl, 
ContOperl, Caus2Funcl, IncepFuncl and FinFuncO; for Experiment 2, we used CausFuncO, 
Operl, Oper2, Reall and Real2. For glosses and examples for each ofthese LFs, see Section 
2. Tables 1 and 2 give information on the number of the instances used for each LF in the ex- 
periments. For Experiment 1, a collection of Spanish collocations from (Alonso Ramos, 
2003; Sanromán, 2003) that are already classified in terms ofLFs has been used. For Experi- 
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ment 2, the data have been collected by interviewing native speakers of Spanish and by con- 
sulting dictionaries. \ 

CeuSaFunCi C<MrtQr>eri FinFuiK& Operi IftcepFumti 
71 1.4 •  40 37 23- 

Table 1. Distribution of LF-instances in Experiment i 

••••••«, Opea ¡Opefe Reái Realie 
'53 87 48 52 53 

Table 2. Distribution of LF-instances in Experiment 2 

All experiments have been carried out with non-disambiguated test material.2 Given that 
in SpEWN an element of any test bigram usually has more than one sense, the cross-product 
of all possible readings of each test bigram must be built. That is, if we assume that for a giv- 
en bigram (N,V), the noun N encounters sN senses and the verb V sV senses, we build 
{SelN,Se2N,...,SesNN} x {SelV,Se2V,...,SesW}, where SeiN (1 < i < sN) is one of the 
nominal senses and SejV (1 <j < sV) one of the verbal senses. To classify a given candidate 
bigram, (SeiN, SejV)s ofthis word bigram areexamined as prescribed by the ML-techniques 
in use. Obviously, only one of the (SeiN, SejV)s may qualify the word bigram as an instance 
of a specific LF. However, as is well-known, the distinction of word senses in SpEWN is bi- 
ased towards English, which means that sensedistinctions are made for a Spanish word if the 
corresponding readings are available for the English material - even if they are not available 
in Spanish; cf. (Wanner et al. 2004) for examples. As a result, Spanish words are often as- 
signed several incorrect senses. This has negative consequences for the quality of the classi- 
fication procedure. To minimize these consequences we use for all ML-techniques the so- 
called "voting" strategy: instead ofchoosing ONE sense bigram as evidence that the word bi- 
gram is instances of the LF L, each sense bigram of the given word bigram "votes" for an 
LF; the word bigram is assigned the LF-label with most votes. 

To eliminate a distortion of the experiment outcomes by the selection of the training sam- 
ples, experiments are run in 200 to 500 iterations. The quality figures cited below reflect the 
average performance over all iterations. 

2 Recall, however, that we train on manually disambiguated LF-instances. 
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LF ML>Techniips 
^Tif~~T   •^ TAN' 

Caus3sFunc1 0.«4 | 0..84    10.45 |0.99 0.9810.98 
CQMOP&ì 0,95 | 0,75      0,98 | 0.39 1,00  1.00 

FfilFunč» 0.9510.76   |0,9S (OJI LOO  OJO 
ImcepFunci 0.701 OM     0.93 i 0.38 0,57  LOO 
_2ESL 0..Ä7 0.93 J 0Jf[0J4 0.96  LOO 

Table 3. The qua!ity figures (as p\r) of emotion noun bigrams by the different ML-techniques 

Tables 3 and 4 show the performance of the three ML-techniques. 'p|r' stands for 'preci- 
sion|recall'. As usual, we define precision asp = \LFci\ I \LFpe\ and recall as r = \LFci\ I \LFi\, 
where \LFci\ is the number of test set elements correctly classified as the LF i, \LFpe\ the to- 
tal number of test set elements classified as the LF i, and \LFi\ the total number of test set el- 
ements available for the LF i. 

The tables reveal that both the absolute and comparative performance of the techniques 
varies from LF to LF. N0 technique can be identified as the best at the first glance. Let us 
evaluate thus in the next subsection the performance of each technique in more detail with 
respect to its precision and recall. 

LF ML-Techdgitfô 
NN NB TAN 

CauäfunCffl 0.59 10.79 0..44 10.89 0.45 |0.57 
Operi 0.65  0.55 0.87 0.64 0,75 I 0.49 
Opef2: 0.62 0.71 0.55 0.21 0.55 0.56 
Reali 0.58 0,44 0,5810,37 0,78 ®• 
Real2 0.56  0,55 0,73 0,35 0.341 0,67 

Table 4. The quality figures (as p\r) of field-indipendent bigrams by the different ML-techniques 

5.2 Classification Experiment Evaluation 

The performance of all techniques varies considerably between Experiment 1 and Experi- 
ment 2. While for emotion bigrams, especially TAN achieves the optimal quality figures for 
several LFs, for field-independent bigrams no techniques reaches a 100% quality. 

5.2.1 Emotion bigram classification evaluation 

Table 3 illustrates that in the case of emotion collocation classification, the precision of 
TAN is considerably better than that ofNNand NB for Caus2Funcl and Operl ; it is still bet- 
ter (although less so) for ContOperl and FinFunc0, and it is worse than NN and NB for In- 
cepFuncl. NB performs better than NN for ContOperl and IncepFuncl, while NN is consid- 
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erably better than NB for Caus2Funcl. For FinFuncO and Operl, NN and NB perform the 
same. To understand why, we must assess the semantic characteristics of samples used in the 
training and test material; especially the analysis of the collocates may be instructive. We 
presuppose that the compilation ofthe training and test material has not been biased. 

We have analyzed the semantic composition of the collocate elements available for each 
LF with respect to similarity and dispersion. The measure of similarity captures how similar 
the semantic descriptions of the samples for a given LF among each other are. The measure 
of dispersion captures to what extent semantic features of the samples for a given LF are en- 
countered in the descriptions of samples for other LFs. 

The performance of all techniques suffers from low similarity and high dispersion. How- 
ever, NB is especially predisposed since it attempts to identify a number of isolated semantic 
features that are characteristic of each LF. Therefore, NB's precision is only high in the case 
of those LFs whose samples show a low dispersion and high similarity. In the case of 
Caus2Funcl, the dispersion is high; therefore, NB performs poorly. NN and TAN are more 
stable than NB. TAN suffers from the dispersion at a higher level, namely the dispersion of 
feature co-occurrence. Thus, it performs worst for IncepFuncl because samples of this LF 
are dominated by the interdependency of features that also often co-occur in the samples of 
other LFs. NB is not vulnerable to feature interdependency dispersion because it considers 
the probability of the occurrence of isolated features. As TAN's, NN's performance is also 
the lowest for IncepFuncl. However, it is not as low since the matching of the features of a 
candidate bigram with ALL features of prototypical samples helps reduce the bias towards 
high frequency co-occurrence. 

The ML-techniques vary with respect to recall even more than they do with respect to 
precision. Also, the tendency of NB's performance to vary across different LFs is stronger; 
cf. 0.99 for Caus2Funcl and 0.24 for Operl. NB's recognition ofContOperl-, IncepFuncl, 
and Operl-instances is poor. This is because only a small share of isolated features is really 
specific to the instances of one LF. All othersare shared by some instances of other LFs. If 
there are more than a few of such instances and there is more training material for the other 
LFs, NB becomes biased towards the other LFs. TAN achieves a maximal recall (1.00) for 
three LFs out of five. However, for FinFuncO, "only" 0.60 are achieved. This is because of 
the low discriminatory potential of the characteristic feature co-occurrences within the sam- 
ples for this LF. NN's recall is rather high for all five LFs. This implies that for each LF in- 
stances are available which are prototypical enough to serve as reference collocations. 

5.2.2 Field Independent bigram classification 

Due to semantically more heterogeneous instances of the individual LFs it is not surpris- 
ing that the performance of the techniques on field independent bigrams is worse than on 
emotion bigrams. The highest precision is achieved by NB with 0.87 for Operl. NB is also 
better than NN and TAN for Real2, while TAN performs better for Reall, and NN for Caus- 
Func0. The low performance of TAN for CausFunc0 and Real2 is again due to the low dis- 
criminatory potential of the most salient feature co-occurrences (i.e., high co-occurrence dis- 
persion) within the samples for these two LFs: Also, TAN is biased towards classifying can- 
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didate bigrams as instances of CausFuncO due to the numerical dominance of CausFuncO 
samples in our experiment setting. This bias is also one of the reasons for the even poorer 
performance of NB towards CausFuncO. NN is again the most stable technique. 

Despite the more heterogeneous instances available for the individual LFs, and thus less 
pronounced prototypical samples, the recall with NN is substantial. Only for Reall, it goes 
down to 0.44. This is because of the extreme diversity of the instances of Reall. Compare, 
e.g., ejercer autoridad lit. 'exercise authority' vs. lanzar [un] misil lit. 'lance [a] missile' vs. 
pilotar [un] avión lit. 'pilot [a] plane'. TAN also achieves its lowest recall for Reall (even 
considerably lower than NN). NB's recall is highest for CausFuncO. This can be explained by 
the prominence of some of the features of many CausFuncO-instances in our training and test 
material. With respect to Oper2, NB reaches only a very low recall (namely, 0.21). Such a 
low recall is partially due to the more scarce presence ofOper2-samples in our material. 

5.3 Training Set Ratio Experiments 

As mentioned above, we tested the variation of the performance of the ML-techniques in 
relation to the proportion of the sizes of the training set and test set. In both experiments 
(emotion field oriented and field-independent experiments), for each LF, x% of the available 
LF-samples have been used as training material; the remaining 100 - x% of the samples of 
all five LFs used in the experiment served as test material. Experiments have been performed 
with x = 5%, 10%, 25%, 50%, 75% and 95%. To eliminate a distortion of the experiment 
outcomes by the selection of the training samples, for each ratio, experiments have again 
been run in 200 to 500 iterations. Figures 2-6 show the evolution ofthe precision Q?) over the 
training set ratio for emotion bigram classification. Due to the lack of space, we do not dis- 
cuss in detail the evolution of recall (r) and the evolution ofp and r in the case of field-inde- 
pendent classification. 

p varies for each LF and again depends on the ML-technique. In the case of NN-classifi- 
cation, for all LFs, except for ContOperl, the ratio of 10% provides the highest precision: 
0.95 for Caus2Funcl, 1.00 for FinFunc0, 0.73 for IncepFuncl, and 1.00 for Operl.3 This 
means that when 10% of the material available for the LF i is taken for training, the share of 
training instances for the LF i' which are semantically similar to candidate bigrams for /, is 
the smallest. For ContOperl, the ratio of 95% leads to a significantly better p than 10%, 
which is the second best (0.95 compared to 0.93). 

In case ofNB, the precision for ContOperl, FinFunc0, IncepFuncl and Operl increases 
significantly with the increasing training set size ratio.4 The precision for Caus2Funcl does 
not improve over the increasing training set size ratio. The classification trace shows that this 

. 

3 We use an equal weighting of p and r to calculate the/-score:/= 2pr I ty + r). 
4 The decrease ofp for the 10% ratio in the case of ContOperl is due to our unfortunate experiment setup: given that 
we use only a few ContOperl-instances, the 5% and the 10% ratios for ContOperl are equally small, while for the 
other LFs, the number of training instances is higher for the 10% ratio. This disproportion leads to the bias of the 
NB-network in particular towards CausFuncl and FinFunc0. 
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is first of all because (JV,V)s with a specific V(e.g., sembrar and dar) have notoriously been 
classified as FinFuncO. The componential descriptions of the majority of the senses of this V 
are too similar to the descriptions of FinFuncO training set instances. 

\~+~m ~ *"• • • «ł^Wł í 
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Figure 2. p of emotion bigram classification 
with Caus2Funcl 

Figure 3. p of emotion bigram classification 
with respect to ContOperl 

In the case ofTAN-classification, Caus2Funcl-, ContOperl-, FinFuncO, and Operl-fig- 
ures improve in general over the training set size ratios. For IncepFuncl, the highest preci- 
sion is achieved with the training set ratio of 50%. With the 95% ratio, the network's perfor- 
mance decreases slightly to 57%. This means that with a ratio of 95%, instances come to bear 
whose characteristic features are met in instances of other LFs as well. 

In general, it can be stated that while NB and TAN benefit from larger training sets, the 
NN-technique is rapidly saturated: as long as there are only a few prototypical instances for 
each LF, the correct prediction that a candidate bigram is sufficiently similar to one of these 
instances is easier than when there are more (and thus also more heterogeneous) prototypical 
instances. Obviously, this is only valid (as we will see immediately below) if the few proto- 
typical instances are indeed representative for an LF in the given field. 
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Figure 4. p of emotion bigram classification 
with respect to FuncFuncO 

Figure S.p ofemotion bigram classification 
with respect to IncepFuncl 
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To contrast the evolution of the performance of the ML-techniques on emotion bigrams 
with their performance on field-independent bigrams, Figure 7 shows the precision of our 
techniques with respect to the Operl-classification when applied to field-independent bi- 
grams. 

/V.               .,—-- «—» 
ť*                                  ^^•-•1--•~•--**•••« **- 
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Figure 6.pofemotion bigram classification 
with respect to Operl 

Figure 7. p of field-independent bigram 
classification with respect to Operl 

Unlike with respect to emotion bigrams, the precision of NN in Figure 7 steadily increas- 
es with the increasing training set ratio. This indicates that the prototypical collocations 
added to the training set of an LF (here, Operl) at each stage of the training set ratio augmen- 
tation tend to cover new profiles of instances of this LF. 

5.4 ID3 Classification Experiment 

Let us now discuss how characteristic features of collocation elements can be used by an- 
other ML-technique, namely the ID3-based classifier, and compare the performance of ID3 
totheperformanceofNB. 

The ID3-algorithm constructs an optimal decision tree from the training instances avail- 
able for each class (in our case, LF). The leaf vertices of the tree are class labels (= LF- 
names); the root and intermediary vertices are attribute (= meaning component) labels. The 
construction of the tree is recursive. During each recursion, the attribute with the minimal av- 
erage entropy from the remaining list of not yet inserted attributes in the considered path 
from the root is chosen.5 

The performance of the decision tree constructed by ID3 decisively depends on the opti- 
mal determination ofthe attributes used as vertices ofthe tree. Since in our experiments each 
component c in B» C is a binary attribute, the resulting tree is a binary tree with '1' and '0' as 
labels of outgoing edges of an attribute vertice. As already discussed above, for an instance / 

5 We refrain from introducing here the algorithm and the average entropy formula used for attribute selection; the in- 
terested reader is asked to consult (Quinlan, 1986) or any introductory book on Machine Learning. 
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in a training set ofthe LF L, c has the value 'l' ifit is available in the description of/, and '0' 
ifit is not available. When traversing the tree during classification, the 'l'-path is taken ifthe 
description N» V contains the attribute in question and the '0'-path otherwise. 

Table 5 shows the precision and recall achieved by the ID3-classifier with the 95% train- 
ing set ratio. For emotion noun bigrams, ID3'sprecision is higher for Caus2Funcl and slight- 
ly also for IncepFuncl than it was for NB (0.76 compared to 0.45 and 1.00 compared to 
0.93). For the other three LFs, ID3's precision performance is worse. Its recall is in general 
lower, only for FinFunc0, it performs somewhat better. Note also the analogy in the distribu- 
tion of the recall over the different LFs. For field-independent bigrams, ID3's precision is in 
general somewhat lower than NB's - except for CausFunc0 for which it reaches 0.53 (com- 
pared to 0.44). In contrast, its recall is higherfor three of the LFs - FinFunc0, IncepFuncl 
and Operl. 

To explain the deviating tendencies as well as the absolute differences between the per- 
formance of NB and ID3, a further thorough evaluation is needed. 

LF emotion fi e3<N.tiđei ••••••* 
••••••••• 0.761•• 0.5310,65 
ContOperi 0.63 | •. to 0.8410.57 

FinFuncä 0.39 0.93 0. S310.40 
IneepFijfiCi 1.00 0.34 0.4• | 0.48 

Operi 0.56 0.025 0.5210.51 

Table 5. Performance of ID3 (in terms ofp\r) on emotion and field independent bigrams 

6 Conclusions 
Our experiments demonstrated that ML-techniques can be used to automatically classify 

collocations according to such a fine-grainedsemantic typology of collocations as lexical 
functions. Furthermore, our experiments have shown that the performance of the different 
techniques may vary considerably. Especially the performance of NB, but also that of TAN, 
seems very prone to the semantic profiles of the training and test instances of the LFs. NB is 
precise in the collocation recognition if many instances of a given LF reveal the same charac- 
teristic semantic features. For instance, for emotion bigrams, the characteristic features of 
ContOperl-collocations are, among others, 'Relation' and 'mantener' 'keep'. TAN is able to 
reach the highest quality figures of all techniques, but the variation of its performance makes 
it unreliable. NN is the most stable technique that we investigated, although its performance 
is in certain constellations somewhat lower than the performance of NB and/or TAN. This 
makes it at this stage of investigation the favorite ML-technique for collocation dictionary 
compilation. However, a deeper contrastive evaluation of the figures obtained by each tech- 
nique is still necessary. Also, further experiments with additional collocation material must 
be carried out. 

With respect to the structure and content of collocation dictionaries, our experiments 
demonstrated that it is useful to include information on prominent semantic features and their 

1086 



Phraseology and Collócation 

interdependency common to the instances ofan LF. Ifan LF possesses outstanding prototyp- 
ical samples, they should be also included. This would be helpful for the learner with respect 
to both decoding and encoding. 
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